Fullscreen
Print

Stoichiometric air ratio

Air–fuel ratio (AFR) is the mass ratio of air to fuel present in an internal combustion engine. If exactly enough air is provided to completely burn all of the fuel, the ratio is known as the stoichiometric mixture, often abbreviated to stoich. AFR is an important measure for anti-pollution and performance-tuning reasons.

In theory a stoichiometric mixture has just enough air to completely burn the available fuel. In practice this is never quite achieved, due primarily to the very short time available in an internal combustion engine for each combustion cycle. Most of the combustion process completes in approximately 4–5 milliseconds at an engine speed of 6000 rpm. This is the time that elapses from when the spark is fired until the burning of the fuel air mix is essentially complete after some 80 degrees of crankshaft rotation.

Catalytic converters are designed to work best when the exhaust gases passing through them are the result of nearly perfect combustion.

A stoichiometric mixture unfortunately burns very hot and can damage engine components if the engine is placed under high load at this fuel–air mixture. Due to the high temperatures at this mixture, detonation of the fuel air mix shortly after maximum cylinder pressure is possible under high load (referred to as knocking or pinging). Detonation can cause serious engine damage as the uncontrolled burning of the fuel air mix can create very high pressures in the cylinder. As a consequence stoichiometric mixtures are only used under light load conditions. For acceleration and high load conditions, a richer mixture (lower air-fuel ratio) is used to produce cooler combustion products and thereby prevent detonation and overheating of the cylinder head. Wikipedia, Stoichimetric air ratio (external link)


Page last modified on Thursday 29 of December, 2011 03:10:08 MST

Search Wiki PageName

Recently visited pages