Fullscreen
Print

Phaser

Pew Pew! Scientists Build Lasers Out of Sound, Call Them Phasers
BY ADAM MANN03.18.136:30 AM

Using a nanoscale drum, scientists have built a laser that uses sound waves instead of light like a conventional laser.

Because laser is an acronym for “light amplification by stimulated emission of radiation,” these new contraptions – which exploit particles of sound called phonons – should properly be called phasers. Such devices could one day be used in ultrasound medical imaging, computer parts, high-precision measurements, and many other places.

A laser is created when a bunch of light particles, known as photons, are emitted at a specific and very narrow wavelength. The photons all travel in the same direction at the same time, allowing them to efficiently carry energy from one place to another. Since their invention more than 50 years ago, almost all lasers have used light waves. Early on, scientists speculated that sound waves be used instead, but this has proved tricky to actually achieve.

It wasn’t until 2010 that researchers built the very first sound lasers, coaxing a collection of phonons to travel together. But those first devices were hybrid models that used the light from a traditional laser to create a coherent sound emission.

“In our work, we got rid of this optical part,” said engineer Imran Mahboob of NTT Basic Research Laboratories in Japan, co-author of a paper describing the new sound lasers that appears Mar. 18 in Physical Review Letters. Because they need one less part, these new phasers “are much easier to integrate into other applications and devices.”

In traditional lasers, a bunch of electrons in a gas or crystal are excited all at the same time. When they relax back to their lower energy state, they release a specific wavelength of light, which is then directed with mirrors to produce a beam.

The narrow frequency of sound that the phaser produces. Image: Mahboob et al., “Phonon-lasing in an electromechanical resonator,” 2013

Sound lasers work on a similar principle. For Mahboob and his team’s phaser, a mechanical oscillator jiggles and excites a bunch of phonons, which relax and release their energy back into the device. The confined energy causes the phaser to vibrate at its fundamental frequency but with at a very narrow wavelength. The sound laser produces phonons at 170 kilohertz, far above human hearing range, which peters out around 20 kilohertz. The entire device is etched onto an integrated circuit that’s about 1 cm by 0.5 cm. Read more here: Sound Phasers (external link)


Page last modified on Monday 18 of March, 2013 13:46:17 MDT

Search Wiki PageName

Recently visited pages